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Abstract

Background and Objectives

Epilepsy is a common neurologic disorder. Although antiseizure medications (ASMs) are the
first-line treatment, identifying the most effective ASM for each individual remains a trial-and-
error process. Genetic variation may influence treatment response. We aimed to develop and
validate a multimodal deep learning model that integrates clinical and genomic features to
predict response to the initial ASM in people with newly diagnosed epilepsy.

Methods

We used data from individuals with newly diagnosed epilepsy in Australia as the development
cohort and participants from the Human Epilepsy Project 1 (recruited in the United States,
Europe, and Australia) as the external validation cohort. All participants initiated ASM treat-
ment and were followed prospectively for at least 1 year. We included 16 clinical factors and
constructed 4 genomic feature types related to epilepsy and ASM pharmacogenomics, with and
without functional impact annotations. We evaluated various machine learning architectures
and multimodal fusion strategies to predict seizure freedom while taking the initial ASM at
1 year.

Results

In the development cohort (n = 286, median age 39 years, 47.2% seizure free), combining
clinical and genomic features in our proposed multimodal deep learning model improved
predictive performance. The highest area under the receiver operating characteristic curve
(AUC) of 0.74 (95% CI 0.70-0.78) was achieved using clinical factors and genomic variants
affecting transcription factor binding, significantly outperforming the clinical-only model (AUC
0.67, 95% CI 0.62-0.72; p < 0.0S). In the external validation cohort (n = 219, median age
31 years, 20.5% seizure free), the same feature combination achieved an AUC of 0.69 (95% CI
0.67-0.71), higher than the clinical-only model (AUC 0.62, 95% CI 0.60-0.64; p < 0.05).
Applying this model to the development cohort, if all participants took the highest ranked
ASMs, the mean predicted seizure-free probability would be 68.05% (95% CI 65.79%-70.35%)
compared with the observed seizure-free rate of 47.2% (95% CI 41.3%-53.2%).

Discussion

Integrating genomic data with clinical features enhances the ability of deep learning models in
predicting ASM response in newly diagnosed epilepsy. This approach may support personal-
ized treatment selection and improve clinical outcomes.
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Glossary

ASM = antiseizure medication; AUC = area under the receiver operating characteristic curve; CV = cross-validation; eQTL =
expression quantitative trait loci; GBDT = Gradient Boosting Decision Tree; GOI = gene of interest; GT = genotypes; HEP1 =
Human Epilepsy Project 1; HOX = homeobox; MELB = Melbourne cohort; MFB = multimodal factorized bilinear; MLP =
multilayer perceptron; SHAP = Shapley Additive Explanation; SNP = single-nucleotide polymorphism; TF = transcription

factor.

Introduction

One in 26 people will develop epilepsy during their lifetime."
Compared with the general population, people with epilepsy
have increased medical and psychiatric comorbidities, in-
creased risk of premature death,” reduced quality of life,* and
reduced productivity, placing a substantial economic cost on
them and society.' Recurrent seizures can be suppressed by
treatment with antiseizure medications (ASMs) in a pro-
portion of patients. However, there is high variability in re-
sponse to ASMs, ranging from complete seizure freedom to
ongoing seizures and/or the development of intolerable ad-
verse effects that result in early ASM discontinuation(s) and
switching. The challenge of treatment selection is com-
pounded by the introduction of more than 15 new ASMs to
clinical practice in the past 2 decades, most of which have
shown similar efficacy when compared on a group basis.*

It has been proposed that a more “personalized” approach in
ASM selection that takes into account personal characteristics
may improve treatment outcomes for people with epilepsy.’
Previous research has identified a number of clinical pre-
dictors of response to ASMs, including type of epilepsy,
number of pretreatment seizures, and presence of psychiatric
comorbidities.® Based on the aforementioned factors, a ma-
chine learning model was recently developed that demon-
strated the feasibility of personalized prediction of response to
the first ASM in adults with newly diagnosed epilepsy.”

In addition to clinical factors, genomic variants are known to
influence treatment response through their pharmacokinetic
and pharmacodynamic effects.® The incorporation of DNA
sequencing data into machine learning models is technically
challenging because of its high dimensionality but has been
performed. A recent study demonstrated that machine
learning models can learn patterns from the combination of
clinical and genomic factors to predict the outcome of ad-
junctive brivaracetam in individuals with drug-resistant epi-
lepsy enrolled in regulatory clinical trials.® This study explored
the predictive value of structural variants that affect the mo-
lecular target of brivaracetam (synaptic vesicle 2A), as well as
genes related to the development of epilepsy, providing proof-
of-concept of this approach. However, the abovementioned
methods are still limited to studying a single ASM, brivar-
acetam, and research on other ASMs is still insufficient. In
addition, existing studies are based only on limited genomic
data and fail to fully explore the potential impact of different
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genomic features on treatment response. It is important to
note that most existing methods fail to fully harness the sig-
nificant potential of deep learning models in capturing com-
plex data patterns and performing cross-modal feature fusion,
thus limiting their application in efficient and accurate di-
agnosis and personalized treatment plans. Beyond technical
challenges, there are also ethical concerns, such as privacy,
consent, distributive justice/fairness (including generaliz-
ability), data bias, and data discrimination, which need to be

considered in the use of genomic data in machine learning
10
models.”

Our ultimate research aim is to develop a machine learning
model that may be applied to increase the likelihood of seizure
freedom by assisting clinicians to select the ASM predicted to
be most effective on a patient-by-patient basis. To develop the
model, we used the actual clinical outcome of each patient’s
first prescribed ASM as the ground truth. We designed
a multimodal deep learning architecture that captured both
seizure control and drug tolerance. To address the high di-
mensionality of genomic data, we constructed genomic-
specific features. We assessed how clinical data and genetic
composition uniquely contribute to predicting drug response.
Model performance was then compared across unimodal
inputs (clinical or genomic features alone) and multimodal
inputs (combined clinical and genomic features) to evaluate
the added value of integrating multiple data types. We dem-
onstrated that our best multimodal model achieved good
predictive performance in an independent external cohort.
Finally, we illustrated how the model might be applied clini-
cally in the future.

Methods

Standard Protocol Approvals, Registrations,
and Patient Consents

The development cohort (Melbourne cohort, MELB) was
approved by the Melbourne Health Human Research Ethics
Committee (Ethics Approval Number: HREC 2002.232). All
participants provided written informed consent. The external
validation cohort from the multicenter Human Epilepsy
Project 1 (HEP1) was approved centrally by the New York
University Institutional Review Board and locally by each
participating site’s institutional research ethics board. Partic-
ipants in HEP1 were recruited from 34 major tertiary epilepsy
centers across the United States, Australia, Canada, and
Europe within 4 months of initiating ASM treatment for
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newly diagnosed focal epilepsy. The handling of sensitive
patient information, including genomic data, was conducted
in strict accordance with ethical guidelines and recognized
key bioethics principles such as justice and nonmaleficence.
Data were stored on secure, access-controlled servers, and
only authorized members of the research team had access.
The types of seizures and epileptic syndromes were
recorded in each study and classified according to the In-
ternational League Against Epilepsy criteria.'' Full details
of cohort characteristics and study procedures are provided
in eMethod 1.

Study Cohorts

Development Cohort (MELB)

Individuals with newly diagnosed epilepsy were prospectively
recruited at 2 national hospitals in Melbourne, Australia
(2003-2016). The study setting of the development cohort
has been previously described.” Eligible participants were at
least 9 years old, had initiated ASMs within 3 months before
recruitment, and were followed for at least 1 year. Those with
previous epilepsy or untreated with ASMs during the study
period were excluded.

External Validation Cohort (HEP1)

The external validation cohort comprised participants from
the HEP1,"”” a multinational and multicenter prospective
study (2012-2020) focused on newly diagnosed focal epi-
lepsy. Study eligibility was determined according to the
inclusion/exclusion criteria as outlined in previous pub-
lications."? Principal component analysis was used to remove
genetic outliers based on ancestry.

Outcome Assessment

The participants of the development cohort were pro-
spectively followed up at 3 months and 1 year after enroll-
ment. At each follow-up, the responses to therapy were
recorded, including seizure occurrence and emergence of
adverse events. Participants of the external validation cohort
had standard annual follow-up visits for up to 6 years after
enrollment, which usually coincided with a clinical visit. Sei-
zure and ASM information was prospectively collected and
entered into the participant’s personal electronic seizure diary.
Data from the diaries were verified with participants on annual
visits and cross-referenced with their medical records.

For this analysis, the outcome was based on the achievement
of seizure freedom during the first year of commencing
treatment. Seizure freedom was defined as no seizure within
12 months of treatment initiation and continued use of the
first ASM monotherapy at 12 months after treatment initia-
tion. Treatment failure was considered if ASM therapy was
changed (switched/added) for any reason within the first 12
months.

Clinical Factors
We included the same clinical factors used in a previous study
that developed a deep learning model to predict treatment
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response to the first ASM in a different cohort of people with
newly diagnosed epilepsy.” These factors were sex, history of
cerebral infection, significant head trauma, febrile seizure,
cerebral hypoxic injury, substance abuse, alcohol abuse, epi-
lepsy in first-degree relative, cerebrovascular disease, in-
tellectual ~ disability, psychiatric ~disorder,
pretreatment seizures, type of epilepsy, EEG findings, MRI
findings, and the first prescribed ASM.

number of

Genotypes

Participants in both cohorts had been previously genotyped
using single-nucleotide polymorphism (SNP) arrays, and
these data were imputed against the same reference panel and
the same quality filtering was applied (eMethod 2 for details).

Construction of Genomic Features

We constructed 4 genomic features (Table 1). Each of these
comprised an input matrix, whereby the rows were genes, the
columns were sample IDs, and the cell values represented the
burden of genetic variation (eMethods 2 provides full details).
In brief, we generated 2 types of genomic features (which
were not mutually exclusive), one comprising genotype in-
formation only (Table 1, GT Feature) and one that included
scores representing the functional consequence of the alter-
native genotype (remaining 3 Features). We applied a tar-
geted approach based on genes associated with epilepsy or
pharmacogenomics of ASMs (in eTables 1-3), hereafter re-
ferred to as genes of interest (GOIs). To construct the GT
Feature, the genotypes for variants within GOIs for each in-
dividual were encoded as 0 for noncarriers, 1 for heterozygous
carriers, and 2 for homozygous carriers and aggregated at the
gene level to provide an input matrix with 1,023 rows. To
capture the impact of genetic variation on gene expression, we
used normalized effect size scores from the Genotype-Tissue
Expression project,'* commonly referred to as expression
quantitative trait loci (eQTL) data, specific to brain tissue. We
generated 2 features whereby the eQTL scores for each var-
iant were multiplied by an individual’s genotype (0, 1, 2) at
the variant locus and aggregated at the gene level. One feature
represented the burden of variants that fall within a GOI but
affect the expression of any gene (eQTL-wGOI Feature), and
the other comprised variants within other genes that are
predicted to affect the expression of a GOI (eQTL-iGOI
Feature). For the remaining feature, we focused on genes that
encode transcription factor (TF) proteins with the aim to
capture the impact of genetic variation on gene regulation
genome-wide (TF Feature)."”> We used the published Deep-
Bind tool'® to generate scores representing the likelihood that
a variant will affect the binding affinity of 1 or more TFs.
eFigure 1 illustrates the distribution and cutoff selection of
DeepBind scores across TFs for generating TF Features.
Genotypes were multiplied by the DeepBind score to gen-
erate a burden score for each variant-disrupted binding site,
and scores were aggregated at the TF level. The resulting TF
Feature comprised all TFs for which binding affinity had been
predicted to be modified by at least 1 variant in at least 1
individual.
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Table 1 Genomic Features

Genomic feature Description No. of genes implicated
GT Encoded GT for variants within GOI 1,023

eQTL-wGOl GT x eQTL scores for variants within a GOI that affect a GOI or any other genes 3,304

eQTL-iGOI GT x eQTL scores for variants that affect a GOI 708

TF GT x score for impact on TF binding 422

Abbreviations: GT = genotype; GOI = gene of interest; eQTL = expression quantitative trait loci; TF = transcription factor; wGOI = within GOI.

Model Performance Evaluation

Consistent with our previous study,” we used the area under
the receiver operating characteristic curve (AUC) to evaluate
the performance of the models in predicting whether a par-
ticipant would be seizure free while taking the first prescribed
ASM during the first year of treatment. Model evaluation was
performed in 3 experiments. First, in the unimodality analysis
experiment, we compared the predictive performance of 3
unimodal models, namely Gradient Boosting Decision Tree
(GBDT),® MLP, and ours (without cross-attention, only self-
attention) for individual features (clinical alone and the in-
dividual genomic features). GBDT is a traditional machine
learning model while MLP and our model are deep learning
models. Second, in the multimodality analysis experiment, we
used different combinations of clinical factors and genomic
features and compared the performance of our multimodal
method with that of 3 other multimodal methods: Mutan,'®
Block,"” and multimodal factorized bilinear (MFB).?® Third,
in the generalizability assessment experiment, the model
showing the best performance in the development cohort was
tested in the external validation cohort. Moreover, because

Model Development

Figure 1 illustrates the overall framework of our multimodal
model. Two separate feature extractors/encoders were used
to extract corresponding deep feature representations from
clinical factors and genomic inputs. Each feature extractor
consisted of 3 multilayer perceptron (MLP) blocks, each
containing a linear layer, a batch normalization layer, a recti-
fier linear unit layer, and a dropout layer. To explore the
relationships within each modality, we applied a self-attention
module that exploited the associations across different feature
variables within each modality based on the attention mech-
anism.'” To further explore the correlation between the 2
modalities, we developed a cross-attention fusion module to
integrate feature representations from both clinical factors
and genomic features. After obtaining the fused feature rep-
resentations, the classification layer, consisting of 3 linear
layers and a softmax classifier, was used to derive the final
prediction. Additional detailed steps for the development
a Audio Volume Mutend optimization of multimodal deep
learning models are presented in eMethod 3, and the detailed
model parameter settings are provided in eTable 4.

Figure 1 Overall Framework of Our Multimodal Model
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the HEP1 cohort only includes patients with focal epilepsy,
we retrained the model using only participants with focal
epilepsy in the MELB cohort to avoid any potential bias and
evaluated the model on HEPI accordingly. In addition,
Shapley Additive Explanation (SHAP)*' on the development
cohort was used to help interpret our model.

Statistical Analysis

We applied S-fold cross-validation (CV) in which each data
set was divided into S folds and each fold was iteratively left
out for testing, while the rest were used to train the model. We
applied the bias-corrected and accelerated bootstrap CI
method with 1,000 repetitions to estimate the mean and 95%
CI for the AUC in each fold of CV. Pooled estimates were
obtained by random-effects meta-analysis with the Sidik-
Jonkman estimator and robust variance to account for within-
fold and between-fold variability and fold dependence.”
Model performance comparisons were subsequently con-
ducted using random-effects meta-regression with the same
specifications and the Benjamini-Krieger-Yekutieli procedure to
control the false discovery rate at 5% in pairwise tests. We also
analyzed the association of the top contributing genomic features
with ASM response by calculating the standardized mean differ-
ence (Hedges g) between the seizure-free and non-seizure-free
groups. Statistical significance was set at p < 0.05 unless otherwise
specified. All statistical analyses were conducted using Python
version 3.10 (Python Software Foundation) with Scipy 1.15.3 and
R version 4.4.2 (R Core Team).

To illustrate how our model might be used to support treat-
ment selection in the future, we used it to derive the predicted
probability of seizure freedom associated with each ASM for
each patient in the development cohort and ranked the ASMs
accordingly. We then calculated the highest predicted prob-
ability of seizure freedom for the whole cohort based on the
assumption that each patient would receive the ASM with the
highest ranked predicted probability of seizure freedom. This
was indirectly compared with the actual seizure-free rate ob-
served in the cohort based on the prescribed ASMs. In ad-
dition, we assessed the distribution of predicted probabilities
across the cohort using a hypothetical cutoff from the best-
performing folds to categorize patients into 3 different groups.
We analyzed feature associations using x” tests for categorical
clinical factors and independent ¢ tests for TF Feature scores
of the top 20 SHAP-derived TFs.

Data Availability
Anonymized data not published within this article will be
made available by request from any qualified investigator.

Results

Clinical and Genetic Characteristics

The final development cohort included 286 participants, and
the external validation cohort had 254 participants. Most of
the participants in both cohorts were White European
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(MELB = 90% [259/286], HEP1 = 79% [202/254]). An-
choring of the genotypes to data from the 1000 Genomes
Project™ identified individuals in the external validation co-
hort, with ethnicities not represented in the development
cohort (Black American, n = 24; Black Asian, n = 1; White
Asian, n = 1) or that clustered with this group (unknown, n =
6; White, n = 3). These individuals (35/254, 14%) were ex-
cluded from further analysis (eFigure 2; eTables S and 6),
leaving a total of 219 for external validation (92% [202/219]
were White).

The clinical characteristics used for model development and
the ASMs prescribed for the participants are summarized in
Table 2. In accordance with their eligibility criteria, the 2
cohorts differed in the proportions of individuals with a his-
tory of substance or alcohol abuse and epilepsy types. A higher
proportion of female individuals and psychiatric disorders
were observed in the external validation cohort. Note that the
HEP1 cohort included patients aged >12 and <60 years at the
time of seizure diagnosis, which differs in age distribution
from the development cohort. Other clinical factors were
comparable between the 2 cohorts. Carbamazepine and val-
proate were most commonly used in the development cohort,
whereas most individuals were prescribed levetiracetam in the
external validation cohort. In the development cohort, 135
individuals (47.2%) were seizure free during the first year after
treatment, whereas in the external validation cohort, 45
individuals (20.5%) were seizure free during the first year after
treatment.

The number of qualifying variants was greater for the vali-
dation cohort (n = 13,015,830) than the development cohort
(n=9,069,919), with 7,005,382 variants being present in 1 or
more individuals from both cohorts. Among GOls, there was
a 78% overlap in variants involving 993 genes, and for 14 of
these, variants were present in either cohort but not both
(eTable 3). Genetic analysis confirmed that there was no
overlap in individuals between the 2 cohorts.

Experiment 1: Unimodality Analysis

As shown in Figure 2A, when using a single data modality, our
model achieved superior classification performance with
clinical features (AUC 0.67, 95% CI 0.62-0.72) compared
with any genomic feature (all corrected p values <0.001).
Among the genomic modalities, eQTL-wGOI and TF yielded
comparable AUCs of 0.62 (95% CI 0.60-0.64) and 0.61 (95%
CI 0.59-0.63), respectively.

Furthermore, in the unimodal setting, our method and MLP
consistently outperformed the traditional GBDT model (all
corrected p values <0.05), highlighting the superior learning
capacity of deep learning models. Across all cases, the mean
AUC of the MLP model was 0.57, compared with 0.51 for
GBDT. Finally, our approach further improved the AUC from
0.57 to 0.59 by incorporating a self-attention mechanism to
integrate features across all modalities (all corrected p
values <0.05).
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Table 2 Clinical Characteristics of Participants and the Antiseizure Medications Prescribed in the Development Cohort
and External Validation Cohort

Characteristic

Cohort, no. of participants (%)

Development cohort (N = 286)

External validation cohort (N = 219)

Sex

Male 152 (53.1) 84 (38.3)

Female 134 (46.9) 135(61.7)
Age at treatment initiation, y, median (IQR) 39 (24-55) 31 (20-41)
History of febrile convulsions

Yes 11(3.8) 6(2.7)

No 271 (94.7) 150 (68.5)

N/A 4(1.4) 63 (28.8)
History of CNS infection in childhood

Yes 1(0.3) 3(1.3)

No 281(98.3) 199 (90.9)

N/A 4(1.4) 17 (7.8)
History of significant head trauma

Yes 48 (16.8) 14 (6.4)

No 235(82.2) 189 (86.3)

N/A 3(1.0 16 (7.3)
History of cerebral hypoxic injury

Yes 3(1.0) 1(0.4)

No 279 (97.6) 202 (92.2)

N/A 4(1.4) 16 (7.4)
History of substance abuse

Yes 108 (37.8) 0

No 17 (5.9) 219 (100.0)

N/A 161 (56.3) 0
History of alcohol abuse

Yes 103 (36.0) 0

No 20 (7.0) 219 (100.0)

N/A 163 (57.0) 0
History of epilepsy in first-degree relative

Yes 83(29.0) 33(15.1)

No 201 (70.3) 179 (81.7)

N/A 2(0.7) 7(3.2)
History of cerebrovascular disease

Yes 20(7.0) 5(2.3)

No 263 (92.0) 197 (90.0)

N/A 3(1.0) 17 (7.7)

Continued
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Table 2 Clinical Characteristics of Participants and the Antiseizure Medications Prescribed in the Development Cohort and

External Validation Cohort (continued)

Cohort, no. of participants (%)

Characteristic Development cohort (N = 286)

External validation cohort (N = 219)

History of intellectual disability

Yes 6(2.1) 22 (10.0)
No 278 (97.2) 197 (90.0)
N/A 2(0.7) 0

History of psychiatric disorder
Yes 23(8.0) 65 (29.7)
No 105 (36.7) 153 (69.9)
N/A 158 (55.3) 1(0.4)

No. of pretreatment seizures
<5 157 (54.9) 103 (47.0)
>5 128 (44.8) 115(52.5)
N/A 1(0.3) 1(0.5)

Type of epilepsy
Focal 223 (78.0) 219 (100.0)
Generalized 61 (21.3) 0
Unknown 2(0.7) 0

EEG findings
Epileptiform abnormality 97 (33.9) 94 (42.9)
Nonepileptiform abnormality 34(11.9) 37 (16.9)
Normal 155 (54.2) 86 (39.3)
N/A 0 2(0.9)

MRI findings
Epileptogenic abnormality 49 (17.1) 40(18.2)
Nonepileptogenic abnormality 54 (18.9) 46 (21.0)
Normal 174 (60.8) 121 (55.3)
N/A 9(3.2) 12 (5.5)

First prescribed antiseizure medication
Levetiracetam 6(2.1) 151 (68.9)
Carbamazepine 137 (47.9) 5(2.3)
Valproate 99 (34.6) 1(0.5)
Lamotrigine 13 (4.5) 52(23.7)
Phenytoin 31(10.9) 10 (4.6)

Abbreviations: IQR = interquartile range; N/A = not available.

Experiment 2: Multimodality Analysis our multimodal model using a cross-attention fusion strategy

In the multimodal setting, we integrated clinical variables and  achieved the highest mean AUC of 0.70, followed by the MFB
genomic features as model inputs. As illustrated in Figure 2B, =~ model (mean AUC 0.63). As shown in Figure 2C, the
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Figure 2 Performance of Different Architectures and Combinations of Features
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“Clinical” means the model uses clinical factors only; “GT” represents genotypes-only features; “eQTL-wGOI" refers to eQTLs located within genes of interest
(GOI); “eQTL-iGOI" denotes eQTLs that affect GOl expression; and “TF” indicates transcription factor features affecting GOlIs. (A) Pooled AUC scores of 5-fold CV
of different models trained on genomic data or clinical data in the development cohort (MELB). (B) Pooled AUC scores of the 5-fold CV with different
multimodal methods in the development cohort (MELB). (C) Performance comparison between our multimodal model and unimodal models in the de-
velopment cohort (MELB). (D) Performance comparison between our multimodal model between unimodal models in the external validation cohort (HEP1).

**p < 0.01.

multimodal models consistently outperformed the unimodal
counterparts across all feature combinations (all corrected p
values <0.05). In particular, the TF Feature, which repre-
sented the consequences of TF binding perturbation, dem-
onstrated notable predictive power (AUC 0.74, 95% CI
0.70-0.78). A detailed quantitative performance report is
provided in eTable 7.

Experiment 3: Generalizability Assessment

In the external validation experiment (a), where the trained
model on the whole development cohort was tested on the
external cohort, the multimodal model consistently out-
performed both the unimodal clinical and genomic models
(Figure 2D), demonstrating superior predictive ability and
November 25, 2025
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robustness (all corrected p values <0.001). Notably, com-
bining clinical features with either the TF Feature (AUC 0.69,
95% CI 0.67-0.71) or the GT Feature (AUC 0.68, 95% CI
0.66-0.70) yielded better predictive performance. Similar to
the development cohort, the model using only clinical features
outperformed most models using genomic features alone (all
corrected p values <0.05). A detailed quantitative performance
report is provided in eTable 8. In the external validation exper-
iment (b), where only patients with focal epilepsy in the de-
velopment cohort were included in model training, the
multimodal models maintained their superior performance
compared with the unimodal models when tested in the external
cohort (eTable 9; p < 0.05). This finding further supports the
model’s generalizability across different patient populations.
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SHAP and Association Analysis of
Contributing TFs

To specifically identify TFs with high predictive capacity, we
restricted the SHAP analysis to the top 20 contributing TFs,
as shown in Figure 3A. eFigure 3 shows the SHAP analysis
displaying the top 20 contributing factors for the unimodal
model using clinical factors only and for our final multimodal
model (combined clinical factors and TF). The most im-
portant contributors include THAP1, DLX4, HOXBS, and
HOXD11, among others. To demonstrate the association of
these TFs with ASM response, Figure 3B shows the stan-
dardized mean difference of the TF scores (GT x score for
impact on TF binding) between seizure-free and non-seizure-

free groups. The analysis showed that variant-induced per-
turbation of THAP1 DNA binding was associated with the
non-seizure-free outcome. Of these top 20 contributing TFs,
13 have been previously implicated in chemoresistance
(eTable 10). Eight of the top 20 contributing TFs were ho-
meobox (HOX) genes.

Potential Future Clinical Application

Applying the best-performing multimodal model (clinical +
TF), Figure 3C shows the predicted probabilities of achieving
seizure freedom for both prescribed and unprescribed ASMs
across 100 randomly selected participants in the development
cohort. Assuming that all participants would receive their

Figure 3 SHAP Analysis and Potential Clinical Application

A B
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(A) SHAP analysis of our final multimodal model in the development cohort (combined clinical factors and TF). The top 20 most contributing TFs are displayed.
(B) Associations of the top 20 most contributing TFs with ASM response using the TF scores (GT x score for impact on TF binding). We calculated the
standardized mean difference (Hedges g), as shown on the x-axis. The negative values mean the scores of the genes are higher in the non-seizure-free group,
indicating the negative association with seizure freedom, and vice versa. NSF = not seizure-free; SF = seizure-free. (C) Predicted response to different
antiseizure medications (ASMs) in 100 participants randomly selected from the development cohort. The horizontal green dash-dot line represents the
hypothetical probability cutoff of 0.5 for seizure freedom. The vertical dotted lines divide the participants into 3 groups: “Non-responder” (all included ASMs
have a predicted probability below the 0.5 cutoff for achieving seizure freedom), “Treatment Selective” (some ASMs have a predicted probability of 0.5 for
achieving seizure freedom, but others are below the cutoff), and “Treatment Sensitive” (all ASMs predicted to have a probability of =0.5 for achieving seizure

freedom).
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highest ranked ASMs, the mean predicted seizure-free prob-
ability for the whole cohort was 68.05% (95% CI 65.79%—
70.35%). In comparison, the seizure-free rate observed in the
whole cohort based on the prescribed ASMs was only 47.2%
(95% CI 41.3%-53.2%). Using a 0.5 probability threshold in
Figure 3C, participants were classified into 3 groups: “Non-
responder” (no ASMs >0.5), “Treatment Selective” (a mix of
ASMs above and below 0.5), and “Treatment Sensitive” (all
ASMs >0.5). eTable 11 provides the number of patients by
each clinical factor among the 3 groups in the development
cohort. Among the clinical factors, only MRI findings, the top
clinical contributor based on SHAP analysis (eFigure 3),
differed significantly between the “Non-responder” and
“Treatment Sensitive” groups, and between “Treatment Se-
lective” and “Treatment Sensitive” groups (eTable 12), sug-
gesting that epileptogenic abnormalities negatively affect
ASM outcomes. Among the top 20 contributing TFs, the
variant disruption of binding affinity scores differed signifi-
cantly between Non-responder and Treatment Sensitive
groups for THAP1 only (p < 0.05).

Discussion

Using a targeted approach, our study demonstrated that in-
tegrating structured genomic data with clinical factors im-
proved machine learning performance in predicting the
success of initial ASM treatment in epilepsy. Our multimodal
model, especially when incorporating variants affecting TF
binding, achieved higher AUC and was validated in an ex-
ternal cohort, regardless of whether it was trained on all
patients or only those with focal epilepsy. This approach
could potentially inform individualized ASM selection to
improve seizure-free outcomes.

We observed that model performance was lower in the ex-
ternal cohort, likely due to differences in study design, seizure
severity, and ASM prescription patterns between the 2
cohorts. The development cohort had higher seizure-free
rates and more frequent use of older ASMs, whereas the ex-
ternal cohort, recruited later, showed a shift toward newer
ASMs such as lamotrigine and levetiracetam. Despite these
differences, the multimodal model consistently outperformed
the clinical-only model, confirming the added value of
genomic data.

We also highlight the importance of choosing an appropriate
modality fusion strategy because genomic data are often
sparse and high-dimensional. In addition, different modalities
may have large distributional differences between them, and
the choice of modality fusion strategy is critically important.
While Mutan and Block wuse multilinear tensor de-
composition, MFB uses a 1-dimensional moving pooling
window to reduce feature size. These methods assume line-
arity in features, which does not hold for the complex nature
of genomic data. Unlike other fusion methods, our model uses
self-attention and cross-modality attention to adaptively
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integrate heterogeneous data. This strategy led to better
performance and improved interpretability, supporting its
utility in integrating complex multimodal biomedical data.

For genomic features, functional information pertaining to
the disruption of TF binding affinity (TF Feature) and the GT
Feature gave the best performance in both cohorts. TFs have
been reported to play a role in drug resistance in other con-
ditions. For example, the TF nuclear factor kappa B alters the
expression of multidrug resistance protein 1, contributing to
drug resistance in cancer cells,** and c-Fos regulation of
NANOG confers fluorouracil resistance.”® Unlike the GT
Feature and eQTL-based Features eQTL-wGOI and eQTL-
iGOJ, variants in the TF Feature were selected based on their
impact on the genome-wide binding of 1 or more of 515 TFs,
and thus not restricted to genes associated with epilepsy or
epilepsy pharmacogenomics. Indeed, 8 of the top 20 con-
tributing TFs were HOX genes. The HOX genes are regulated
by hormones and implicated in resistance to therapies that
block hormone receptors,®® and the expression of HOXBS
and other members of this protein family have been shown to
predict drug resistance in gliomas.”**’” The Feature based on
genotypes only outperformed the 2 genomic features that
incorporated eQTL functional scores. eQTLs that fall within
GOIs (eQTL-wGOIs) provided slightly better model per-
formance than those that affect the expression of GOIs
(eQTL-iGOIs). These trends support the importance of
variant selection methods and suggest that, within the context
of drug response, variants influencing regulatory mechanisms
may be more relevant than protein-coding variants.

Overall, incorporating genomic features significantly im-
proved the predictive performance of the model across vari-
ous settings. This finding suggests that interactions between
genomic and clinical data are crucial, highlighting the value of
multimodal integration strategies. While such approaches
have been used in cancer drug response prediction using
multiomics data (SNP, transcriptomics, DNA methylation)
and convolutional models,*® their application in epilepsy is
constrained by the lack of omics data from the same samples.
Nonetheless, methods such as graph convolutional networks
and the inclusion of drug characteristics or information on
functional roles of genes/TFs may further enhance model
accuracy.

To illustrate the potential clinical application, we showed that
if all the patients were administered the highest ranked ASMs
by the model, their predicted mean probability of achieving
seizure freedom (68%) would be substantially higher than the
observed seizure-free rate (47.2%) in the development co-
hort. Although indirect, this comparison implies that the
model may have the potential to assist clinicians in selecting
the most effective treatment for individual patients. Arguably,
the “Treatment Selective” group would benefit the most from
this approach, as they could potentially be administered the
higher ranked ASMs at treatment initiation and achieve sei-
zure freedom sooner than random drug selection. A
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randomized controlled trial to prospectively evaluate the ef-
fectiveness of using such a predictive model to assist in the
selection of the initial ASM is currently underway.>

This study has several limitations. Despite including the
largest cohort to date with paired clinical and genomic data for
predicting ASM response, the sample size remains limited,
and only S-fold CV was used. Although k-fold CV can pro-
duce high-variance and dependent test errors, the consistent
performance across both development and external validation
cohorts, together with the added value of combining clinical
and genomic features, not only mitigates this limitation but
also aligns with TRIPOD guidelines for developing a pre-
diction model for diagnostic and prognostic purposes.>* Only
S ASMs were analyzed, which may limit applicability, al-
though these represent widely prescribed first-line treat-
ments.>” Seizure freedom was defined as 12 months without
seizures, which may undermine ASMs requiring longer titra-
tion. The model also used EEG and MRI ﬁndings,33’34 which
may not always be available at treatment initiation. Further-
more, both cohorts were predominantly White (MELB 90%,
HEP1 92%), and 13.7% of external samples were excluded
because of unmatched ethnicity, possibly affecting generaliz-
ability. A lack of diversity in genomic data, typically biased in
favor of White ethnicities, is a recognized and ongoing chal-
lenge to the field of genomic research, including machine
learning model development.” Our future work will in-
corporate more diverse populations and validate models
across regions and ethnicities to improve fairness, robustness,
and equity, especially for historically underserved groups in
epilepsy care.*®

In conclusion, we have developed and validated a multimodal
deep learning model that integrates clinical factors with
structured genomic information to improve the prediction of
treatment outcomes in individuals with newly diagnosed ep-
ilepsy. By enabling individualized prediction of responses to
various ASMs, our model holds promise as a clinical decision-
support tool to assist in drug selection and optimize treatment
strategies. This work represents a step toward more person-
alized and effective epilepsy care.
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